
Optimizing the NPB CG benchmark for multi-core
AMD Opteron microprocessors

Stephen Whalen
Cray, Inc.

August 29, 2007

1 Description of CG

1.1 High-level description
CG approximates the largest eigenvalue of a sparse, symmetric, positive definite matrix, using in-
verse iteration [3]. The matrix is generated by summing outer products of sparse vectors, with a
fixed number of nonzero elements in each generating vector. The matrix sizes and total number of
nonzero elements (“computed nonzeros,” following [3]) are listed in Table 1. The benchmark com-
putes a given number of eigenvalue estimates, referred to as “outer iterations,” using 25 iterations
of the conjugate gradient method to solve the linear system in each outer iteration.

NPB Class Global matrix size Computed nonzeros Outer iterations

B 75,0002 13,708,072 75
D 1,500,0002 694,392,620 100

Table 1: Problem parameters for NPB CG

1.2 Implementational details
1.2.1 The serial benchmark

The dominant computation in each iteration in the inverse iteration algorithm is the solution of a
linear system. As mentioned above, NPB CG takes its name from the conjugate gradient algorithm
used to approximately solve this system. In turn, each iteration of the conjugate gradient algorithm
is computationally dominated by a matrix-vector multiplication.

The reference implementations generate the sparse matrix in compressed sparse row (CSR)
format, also called AIJ format. This storage scheme uses three arrays to describe a matrix A:

• the array a(:) holds only the nonzeros entries of A, in row-major order;

• the array rowstr(:) holds the starting indices of the rows in a—that is, a(rowstr(i)) is
the first nonzero entry in row i;

• the array colidx(:) holds the column indices corresponding to the entries of a.

The resulting code for the matrix-vector multiplication Ap is shown in Figure 1, annotated with
the line numbers where this code appears in cg.f. We will see in Section 1.3 that this kernel is
indeed the “hotspot” for this benchmark.

570: do j=1,lastrow-firstrow+1

571: sum = 0.d0

572: do k=rowstr(j),rowstr(j+1)-1

573: sum = sum + a(k)*p(colidx(k))

574: enddo

575: w(j) = sum

576: enddo

Figure 1: Sparse matrix-vector multiply kernel. The hotspot is the inner loop over k.

1.2.2 The MPI benchmark

To this author’s knowledge, the NAS reference MPI implementation of CG is not documented in
any NAS reports; hence, this subsection lacks citations.

The reference MPI implementation uses a standard two-dimensional block decomposition to
distribute the data among the processes. The global matrix is decomposed into blocks, laid out into
r process rows and c process columns. The reference code implements its own binary-tree global
reduction scheme, which requires that the number of process rows and columns columns both be
powers of two. Therefore, the total process count must be a power of two, so that we may assume
either c = r or else c = 2r. This results in the local matrix sizes given in Table 2.

Vectors are decomposed into c blocks and distributed over the process columns, with each
block replicated throughout each process column. Thus, a matrix A and vector x decompose as

A =

A11 A12 · · · A1c

A21 A22 · · · A2c
...

...
. . .

...
Ar1 Ar2 · · · Arc

 , x = (x1 | x2 | · · · | xc),

NPB Class MPI processes Local matrix size Computed nonzeros
per-process average

B 2 (packed) 75,0002 13,708,072

D 64 187,5002 10,849,885
256 93,7502 2,712,471

Table 2: Per-process array sizes for decomposed CG

2

where, assuming appropriate divisibility of the global problem size n, each Ai j is (n/r)× (n/c), and
each xi has length n/c.

Matrix-vector multiplication proceeds according to the following algorithm.

1. Assign Ai j to process (i, j).

2. Assign a copy of x j to each of processes (k, j), 1 ≤ k ≤ r.

3. Compute Ai jx j on process (i, j).

4. Sum the resulting Ai jx j across process rows; that is, each process (i, k), 1 ≤ k ≤ c, now holds
yi =
∑c
`=1 Ai`x`. At this point, x is distributed over the process columns, while y is distributed

over the process rows.

5. Perform a global transpose to distribute y over the process columns. If the number of process
rows equals the number of process columns, then process (i, j) sends its copy of yi to process
(j, i), where it replaces the local y j. For a non-square distribution, the transposition is more
complicated, with each process sending and receiving portions of their local y blocks.

6. Process (i, j) now holds corresponding blocks of x and y = Ax.

Dot products xT y (and thus norms, as well) use the following algorithm.

1. Assign copies of x j and y j to each of processes (k, j), 1 ≤ k ≤ r.

2. Compute xT
j y j on process (i, j).

3. Sum the resulting scalars across process rows.

This reduction, admittedly, replicates work among the process rows. For machines on which com-
munication is much more expensive than computation, this certainly could be an efficient use of
resources.

1.3 Profiles
Portions of function-level sampling profiles are shown in Tables 3, 4, and 5. The conj grad
subroutine accounts for the majority of the run time in all cases.

Table 3(a) contains the entire profile for a Class B serial run, while Table 3(b) shows the
conj grad line-level profile from the same run. As expected, the line-level profile shows that
the sparse matrix-vector multiply kernel, shown in Figure 1, is the bottleneck for this benchmark.

2 Optimizations

2.1 Software prefetching
Initially, we shall only look at serial optimizations, to improve the performance of the sparse
matrix-vector multiplication kernel.

3

Samp % Cum.

Samp %

Samp Imb.

Samp

Imb.

Samp %

Function

100.0% 100.0% 111354 -- -- Total

98.8% 98.8% 110044 23.00 0.1% conj_grad_

0.7% 99.5% 731 5.50 3.0% sparse_

0.2% 99.7% 206 3.00 5.7% __c_mcopy8

0.1% 99.8% 139 1.50 4.2% makea_

0.1% 99.9% 112 3.00 10.2% __c_mzero8

(a) Function-level profile

Samp % Samp Imb.

Samp

Imb.

Samp %

Group

Function

Source

Line

100.0% 111354 -- -- Total

98.8% 110044 -- -- conj_grad_

cg.f

94.2% 103638 35.00 0.1% line.572

3.8% 4154 6.00 0.6% line.692

0.7% 719 3.50 1.9% line.570

0.6% 664 9.00 5.3% line.652

0.3% 296 8.00 10.3% line.676

0.3% 280 1.00 1.4% line.631

0.2% 183 6.50 13.3% line.662

(b) Line-level profile for conj_grad

Table 3: CrayPat sampling profile for CG Class B serial

4

Samp % Cum.

Samp %

Samp Imb.

Samp

Imb.

Samp %

Function

100.0% 100.0% 12086166 -- -- Total

92.4% 92.4% 11164630 1348.66 0.8% conj_grad_

3.6% 96.0% 437008 461.75 6.4% PtlEQPeek

0.9% 96.9% 108518 166.41 9.1% PtlEQGet

0.6% 97.5% 75491 118.45 9.3% PtlEQGet_internal

0.4% 97.9% 48928 40.50 5.1% sprnvc_

0.4% 98.3% 43849 85.86 11.3% ptl_hndl2nal

0.3% 98.6% 41094 67.91 9.7% sparse_

0.3% 98.9% 37344 80.50 12.3% fast_nal_poll

0.3% 99.2% 35414 73.66 11.9% check_eqs_for_event

0.2% 99.4% 24223 43.52 10.5% randlc_

Table 4: CrayPat sampling profile for CG Class D, 64 processes

Samp % Cum.

Samp %

Samp Imb.

Samp

Imb.

Samp %

Function

100.0% 100.0% 9091448 -- -- Total

70.3% 70.3% 6390252 2519.08 9.2% conj_grad_

14.1% 84.4% 1282126 558.70 10.1% PtlEQPeek

3.5% 87.9% 317760 205.75 14.3% PtlEQGet

2.4% 90.3% 220638 153.13 15.1% PtlEQGet_internal

2.1% 92.4% 193532 53.02 6.6% sprnvc_

1.4% 93.9% 130182 103.48 17.0% ptl_hndl2nal

1.2% 95.1% 110365 93.89 18.0% fast_nal_poll

1.1% 96.2% 104363 96.33 19.2% check_eqs_for_event

1.0% 97.3% 95280 47.81 11.4% randlc_

1.0% 98.2% 86981 239.23 41.5% ioctl

Table 5: CrayPat sampling profile for CG Class D, 256 processes

5

The inner loop of this kernel makes stride-1 accesses through the arrays a and colidx, with no
reuse, and makes random accesses to p. Streaming accesses such as those for a and colidx will
benefit from prefetching, either in hardware or software [1, 2, 4].

In many cases, compilers are able to recognize such access patterns, but PGI’s current compil-
ers are unable to automatically insert prefetch instructions in this kernel. As such, we turn to PGI’s
prefetching directives [7]. The directive

c$mem prefetch <var1>[,<var2>[,...]]

will cause the PGI compilers to emit prefetch instructions for the variables <varn>.
In our examples, the compilers emit prefetchnta by default. This is the desired instruction,

for two reasons [2, 4]. This data is not reused, so eviction to L2 would possibly displace other,
useful, data. Also, the arrays are much larger than 1 MB (see Table 2—the smallest of the arrays,
namely colidx for the 256-process Class D benchmark, exceeds 10 MB by itself), so each array
access will almost certainly miss in L2. If the prefetchntamisses in L2, then the prefetched data
is not evicted into L2, avoiding cache pollution with unneeded data.

For this kernel, it is empirically best to prefetch three cache lines ahead for a (whose elements
are 8 bytes), and two lines ahead for colidx (whose elements are 4 bytes). This could lead to the
following code:

do j=1,lastrow-firstrow+1

sum = 0.d0

do k=rowstr(j),rowstr(j+1)-1

c$mem prefetch a(k+24),colidx(k+32)
sum = sum + a(k)*p(colidx(k))

enddo

w(j) = sum

enddo

However, most of these prefetch instructions are unnecessary. We would prefer to emit only one
prefetch instruction per cache line. Unrolling the loop to a depth of eight, as shown in Figure 2, will
eliminate the superfluous prefetch instructions for a, but will still produce twice as many prefetch
instructions as necessary for colidx. Unrolling further to another depth of two would eliminate
the extra prefetches entirely, but this turns out to provide no speedup.

2.2 Reducing network contention
A huge volume of literature exists addressing data distribution for efficient matrix-vector products
on various types of machines. Lewis and van de Geijn have published a number of papers exam-
ining such distributions for NPB CG in particular [5, 6]. Many of the methods they describe are
promising candidates for implementation on XT systems, but would require significant redistribu-
tion of data after matrix generation.

Without having to redistribute the data, we can improve the communication characteristics by
restructuring the work to avoid the global transposition. This transposition is the only commu-
nication step whose pattern cannot be mapped onto a three-dimensional torus without network
contention.

6

Reference code Unrolled with prefetching
do j=1,lastrow-firstrow+1 do j=1,lastrow-firstrow+1

i = rowstr(j)

iresidue = mod(rowstr(j+1)-i, 8)

sum = 0.d0 sum = 0.d0

do k=i,i+iresidue-1

sum = sum + a(k)*p(colidx(k))

enddo

do k=rowstr(j),rowstr(j+1)-1 do k=i+iresidue, rowstr(j+1)-8, 8

c$mem prefetch a(k+24),colidx(k+32)
sum = sum + a(k)*p(colidx(k)) sum = sum + a(k)*p(colidx(k))

& + a(k+1)*p(colidx(k+1))

& + a(k+2)*p(colidx(k+2))

& + a(k+3)*p(colidx(k+3))

& + a(k+4)*p(colidx(k+4))

& + a(k+5)*p(colidx(k+5))

& + a(k+6)*p(colidx(k+6))

& + a(k+7)*p(colidx(k+7))

enddo enddo

w(j) = sum w(j) = sum

enddo enddo

Figure 2: Unrolling the inner dot-product loop for efficient insertion of prefetch directives

In the case of a square distribution, the following algorithm exploits the data redundancy among
the processes to replace the transposition with a broadcast.

1. Assign Ai j to process (i, j).

2. Assign a copy of x j to each of processes (k, j), 1 ≤ k ≤ r.

3. Compute Ai jx j on process (i, j).

4. Sum the resulting Ai jx j across process rows, leaving the result only on the diagonal process
(i, i).

5. Broadcast the result from process (i, i) throughout its process column.

6. Process (i, j) now holds corresponding blocks of x and y = Ax.

Moreover, any dot products utilizing y can be computed locally prior to the broadcast, by perform-
ing the local reductions only on the diagonal processes, and performing the global reduction only
among those same processes.

3 Results
The transformations described in Section 2 provide an approximate 35–40% gain in the bench-
marks’ self-reported Mop/s rates, shown in Table 6.

7

NPB Class MPI processes Reference code w/ prefetching. and comm. changes
(Mop/s/process) (Mop/s/process) (Mop/s/process)

B 2 (packed) 253.41 346.65 —

D 64 76.93 97.44 104.20
256 105.58 134.22 149.55

Table 6: Performance results before and after code optimizations

Sparse matrix-vector multiplication

Reference code Optimized code

L1 D-cache accesses 79067963239 ops 86717281996 ops
L1 D-cache misses that hit in L2 27189417496 fills 23683802004 fills
L1 D-cache misses that miss in L2 1361834048 fills 4908784328 fills
D-TLB misses 101407612 misses 101671410 misses
LD & ST per TLB miss 779.71 refs/miss 852.92 refs/miss
LD & ST per D1 miss 2.77 refs/miss 3.03 refs/miss
User time 210.228 secs 147.312 secs
Avg Time FPUs stalled 55.929 secs 55.352 secs
Avg Time LSs stalled 17.227 secs 9.232 secs
prefetch instructions dispatched 1 instr 10323838 instr
prefetchnta instructions dispatched 0 instr 4843730349 instr
hardware prefetches attempted 4608844727 ops 91644351 ops
hardware prefetches cancelled 55158840 ops 69451760 ops

Table 7: Hardware counter data for CG Class B, 2 concurrent processes, reported as per-process
averages

Table 7 shows hardware counter data for runs using reference and optimized code. This data
measures only the sparse matrix-vector products shown in Figure 2.

One might expect that nontemporal prefetching would cause a higher number of hits in L2,
since prefetchnta is intended to reduce L2 pollution. The counter data, however, shows the
opposite. In fact, hardware prefetching is hiding this effect. When the reference code executes, the
hardware prefetcher is able to fetch the entries of a and colidx into L2. Thus, when the load-store
unit (LSU) attempts to load entries of a and colidx for the FPUs, the loads would miss in L1 but
hit in L2.

Contrariwise, when the optimized code executes, the explicit prefetchnta instructions pre-
empt the hardware prefetcher, pulling the data directly into L1 instead of L2. This means that the
LSU will hit in L1 more often. The numbers do not show a markedly higher percentage of L1 hits
because the prefetchnta instructions themselves miss in both levels of cache before retrieving
data from memory.

8

4 Conclusions
NPB CG presents two popular, and widely-studied, challenges in HPC applications: sparse matrix-
vector multiplication, and distributed linear algebra. The reference implementation presents only
naı̈ve (that is, easily-coded) implementations of both, allowing significant speedups with minor
code modifications.

Sparse linear algebra is widely recognized as a game of random memory accesses. While the
random accesses are the limiting bottleneck for these kernels, we have seen here that the read-
only stride-1 accesses cannot be ignored. In particular, one must note when there is little or no
data reuse. The Opteron’s exclusive cache structure allows data to bypass L2 entirely, both to and
from memory, thus avoiding cache pollution; however, the hardware is dependent on the software
containing the correct prefetch instructions to accomplish this.

Distributed matrix and vector operations can be implemented with a wide range of distributions,
each requiring specific communication patterns. While hypercube topologies are amenable to any
number of layout strategies, meshes and tori are more vulnerable to network conflict, particularly
in transpose operations. We have seen that a simple modification allows us to avoid the transpose
used in the reference implementation. This gives a large decrease in communication time, without
requiring redistribution of data among the processes.

References
[1] Advanced Micro Devices, Inc. Software Optimization Guide for AMD Athlon™ 64 and AMD

Opteron™ Processors Rev 3.06, September 2005.

[2] Advanced Micro Devices, Inc. Software Optimization Guide for AMD Family 10h Processors
(Quad-Core), June 2007.

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS parallel benchmarks. Report RNR-94-007, NASA Advanced Supercomputing Divi-
sion, March 1994.

[4] John Levesque, Jeff Larkin, Martyn Foster, Joe Glenski, Gary Geissler, Stephen Whalen,
Brian Waldecker, Jonathan Carter, David Skinner, Helen He, Harvey Wasserman, John Shalf,
Hongzhang Shan, and Erich Strohmaier. Understanding and mitigating multicore performance
issues on the AMD Opteron™ architecture. Technical Report LBNL-62500, Lawrence Berke-
ley National Laboratory, March 2007.

[5] John G. Lewis, David G. Payne, and Robert A. van de Geijn. Matrix-vector multiplication
and conjugate gradient algorithms on distributed memory computers. In Proceedings of the
Scalable High Performance Computing Conference 1994, pages 542–550, Los Alamitos, CA,
USA, 1994. IEEE Computer Society Press.

[6] John G. Lewis and Robert A. van de Geijn. Distributed memory matrix-vector multiplica-
tion and conjugate gradient algorithms. In Supercomputing ’93: Proceedings of the 1993

9

ACM/IEEE Conference on Supercomputing, pages 484–492, New York, NY, USA, 1993. ACM
Press.

[7] STMicroelectronics, Inc. PGI® User’s Guide, February 2007.

10

